《因式分解法》教案
- 资源简介:
约1150字。
教学课题:22.2.3因式分解法 教学课型:新授课
教学目标
1.了解因式分解法的概念.
2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.
3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.
4.体验解决问题方法的多样性,灵活选择解方程的方法.
教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程
教学难点:将整理成一般形式的方程左边因式分解
教学过程
一、复习引入
我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法.
二、探究新知
1.因式分解
x2-5x;; 2x(x-3)-5(x-3); 25y2-16; x2+12x+36;4x2+4x+1
2.若ab=0,则可以得到什么结论?
3.试求下列方程的根 :
x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.
分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解.
4. 试求下列方程的根
①、4x2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0
②、25y2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2
③、x2+10x+25=0 9x2-24x+16=0;
④、5x2-2x- = x2-2x+ 2x2+12x+18=0;
分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源