《因式分解法解一元二次方程》教案2
- 资源简介:
约2750字。
《因式分解法解一元二次方程》教案
教学目标
1、知识技能
应用分解因式法解一些一元二次方程.能根据具体一元二次方程的特征,灵活选择方程的解法.
2、数学思考
体会“降次”化归的思想。
3、解决问题
能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.
4、情感态度
使学生知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.
重难点、关键
重点:应用分解因式法解一元二次方程.
难点:灵活应用各种分解因式的方法解一元二次方程.
教学过程
一、复习引入
解下列方程.
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为 , 的一半应为 ,因此,应加上( )2,同时减去( )2.(2)直接用公式求解.
【设计意图】
复习前面学过的一元二次方程的解法,为学习本节内容作好铺垫。
二、探索新知
【问题】
仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?
(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
【活动方略】
在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据。
上面两个方程中都没有常数项;左边都可以因式分解:
2x2+x=x(2x+1),3x2+6x=3x(x+2)
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=- .
(2)3x=0或x+2=0,所以x1=0,x2=-2.
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源