吉林省东北师范大学附属中学2015-2016学年高二理科人教选修2-1【教案】23 双曲线(3份)
2.3~06双曲线及其标准方程--高二理科.docx
2.3~07双曲线第二定义--高二理科.docx
2.3~08双曲线的简单几何性质--高二理科.docx
课题:双曲线及其标准方程
课时:02
课型:新授课
教学目标:
1, 知识与技能目标
理解双曲线的概念,掌握双曲线的定义、会用双曲线的定义解决实际问题;理解双曲线标准方程的推导过程及化简无理方程的常用的方法;了解求双曲线的动点的伴随点的轨迹方程的一般方法.
2.过程与方法目标:培养学生观察、实验、探究、验证与交流等数学活动能力
3.情感、态度与价值观目标
通过作图展示与操作,必须让学生认同:圆、双曲线和抛物线都是圆锥曲线。
4.能力目标
(1).培养想象与归纳能力,培养学生的辩证思维能力,培养学生实际动手能力,综合利用已有的知识能力.
(2).数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.
(3).创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.
新课讲授过程
(1)双曲线的定义
〖板书〗把平面内与两个定点 , 的距离的差的绝对值等于常数(小于 )的点的轨迹叫做双曲线(hyperbola).其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距.即当动点设为 时,双曲线即为点集 .
强调:a的条件是什么;如果去掉绝对值还是双曲线了吗?
(2)双曲线标准方程的推导过程
提问:已知双曲线的图形,是怎么样建立直角坐标系的?类比求双曲线标准方程的方法由学生来建立直角坐标系.
无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程.
类比双曲线:设参量 的意义:第一、便于写出双曲线的标准方程;第二、 的关系有明显的几何意义.
类比:写出焦点在 轴上,中心在原点的双曲线的标准方程
课题: 双曲线的简单几何性质
课时:08
课型:新授课
1.知识与技能目标
(1).通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;
(2).掌握双曲线的标准方程、会用双曲线的定义解决实际问题;
(3).通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.
2.过程与方法目标
(1)复习与引入过程
引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.
3.情感、态度与价值观目标
在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新
新课讲授过程
(1)复习:双曲线的标准方程的讨论来研究双曲线的几何性质.
提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?
通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.
(2)双曲线的简单几何性质
①范围:由双曲线的标准方程得, ,进一
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源