《函数的最大值与最小值》教学设计
- 资源简介:
约4350字。
《函数的最大值与最小值》教学设计(第1课时)
江西省临川第一中学 游建龙
人教版全日制普通高级中学教科书数学第三册
【教材分析】
本节教材知识间的前后联系,以及地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值” ,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值.
高中阶段对用导数求可导函数在闭区间上的最值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦.
【教学目标】
根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标:
1.知识和技能目标
(1)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(2)理解上述函数的最值存在的可能位置.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)在学习过程中,观察、归纳、表述、交流、合作,最终形成认识.
(2)培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题.
3.情感和价值目标
(1)认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.
(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教学重点、难点】
1.教学重点
基于以上对本节教材特点和教学目标的分析,将本节课的教学重点确定为:
(1)培养学生的探索精神,积累自主学习的经验;
(2)会求闭区间上的连续函数的最大值和最小值.
2.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是
(1)发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处;
(2)理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
3.教学关键
本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现结论.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源