《特殊平行四边形》教学设计2
- 资源简介:
约5230字。
第三章 证明(三)
2.特殊平行四边形(三)
一、学生知识状况分析
学生的知识技能基础:学生在八年级已经借助折纸、画图、测量等活动直观的探索过平行四边形、菱形、矩形、正方形等性质和判定,本章教材主要是对这些结论进行理论的证明,而前面的探索过程和方法又为本章证明提供了铺垫,为学生提供了相应的定理证明思路。本章前几节课中,学生又学习了“三角形中位线定理”,这些都为探究“中点四边形”做了铺垫,学生已经具备了探究该命题的基本技能;
学生活动经验基础:在相关知识的学习过程中,学生经历了“探索—发现—猜想—证明”的过程,并初步体会了获得猜想后还应予以证明的意义,感受到了合情推理与论证推理的相互依赖和相互补充的辨证关系,并且学生具有了一定的推理证明的能力。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
教科书基于学生对特殊平行四边形认识的基础之上,提出了本课的具体学习任务:理解中点四边形形状取决于原四边形的对角线的位置和数量关系。但这仅仅是这堂课外显的具体的教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《特殊平行四边形(3)》内容从属于“空间与图形”这一数学学习领域中的“图形与证明”,因而务必服务于推理与论证教学的远期目标:“让学生经历‘探索—发现—猜想—证明’的过程,体会证明的必要性,掌握用综合法证明的格式,初步感受公理化思想,发展空间观念”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:
①再次经历“探索—发现—猜想—证明”的过程,发现决定中点四边形形状的因素,熟练运用学过的各种特殊四边形的识别及性质对中点四边形进行识别,并能对自己的猜测进行证明,进一步发展学生推理论证的能力。
②使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用。
③通过平行四边形、矩形、菱形、正方形、梯形、任意四边形等凸四边形的中点四边形的探求过程,以及引申至凹四边形的中点四边形的探求过程,引导学生体会证明过程中所运用的由一般到特殊再到一般的归纳思想方法、类比的思想方法、转化的思想方法等,培养积极探索、勇于创新的精神,以及推陈出新的创新能力。
④通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣。
三、教学过程分析
本节课设计了六个教学环节:第一环节:问题引入;第二环节:猜想结论;第三环节:分组探究,验证结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题引入
活动内容:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源