《角平分线》教案1
- 资源简介:
约1790字。
1.4、角平分线(一) 课型 新授课
1.要求学生掌握角平分线的性质定理及其逆定理——判定定理,会用这两个定理解决一些简单问题。
2.理解角平分线的性质定理和判定定理的证明。
3.能够作已知角的角平分线,并会熟练地写出已知、求作和作法,可以说明为什么所作的直线是角平分线。
角平分线性质定理及其逆定理。
掌握角平分线性质定理及其逆定理并进行证明。
教 学 内 容 及 过 程
教师活动
引入新课:我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下:
从折纸过程中,我们可以得出CD=CE,
即角平分线上的点到角两边的距离相等.
你能证明它吗?
讲授新课:请同学们自己尝试着证明它,然后在全班进行交流.
已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.
求证:PD=PE.
证明:∵∠1=∠2,OP=OP,
∠PDO=∠PEO=90°,
∴△PDO≌△PEO(AAS).
∴PD=PE(全等三角形的对应边相等).
角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.
你能写出这个定理的逆命题吗?
我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性质定理的逆命题.
如果有一个点到角两边的距离相等,那么这个点必在这个角的平分线上.
此时有学生提问:“我觉得这个命题是假命题.角平分线是角内部的一条射线,而角的外部也存在到角两边距离相等的点.”
事实上,从同一点出发的两条射线一般组成两个角,而“角的内部”通常是指其中小于180°的角的内部,其余部分为角的外部.如上图所示,到∠AOB两边距离相等的点的集合应是射线OC、OD、OE、OF,但其中只有射线OC(即在∠AOB内部的射线)才是∠AOB的平分线.因此逆命题中应加上“在角的内部”的条件.
再来完整地叙述一下角平分线性质定理的逆命题。
在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.
它是真命题吗? 你能证明它吗?
证明如下:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源