《导数及其应用》高考复习指导
- 资源简介:
约5850字。
《导数及其应用》高考复习指导
苍南龙港高中 吕存于
【考点解读】
1.导数(选修II)高考考核要求为:①导数的概念及某些实际背景,导数的几何意义,几种常见函数的导数;②两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式;③利用导数研究函数的单调性和极值,函数的最大值和最小值等。
2.比例与题型:导数是高中新教材改革后新加进的知识之一,从近几年全国统考试卷及2004年浙江卷看,其分值比例逐年上升到现在基本稳定在一大(12分),一小(5分)的两题格局上(2004年浙江卷是如此),是新教材的一个主要得分点。
3.命题热点难点是:①利用导数求函数的极值;②利用导数求函数的单调区间;③利用导数求函数的最值;④利用导数证明函数的单调性;⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题;⑦导数与解析几何相综合的问题。
4.体系整合
5.复习建议:①学会优先考虑利用导数求函数的极大(小)值、最大最小或解决应用问题,这些问题是函数内容的继续与延伸,这种方法使复杂问题简单化。②导数与解析几何或函数图象的混合问题,尤其是抛物线与三次函数的切线问题,是高考中考查综合能力的一个方向,应引起注意。
热点一:导数的几何意义
函数y=f (x) 在点x0导数的几何意义,就是曲线y=f (x) 在点P(x0, f(x0))处的切线的斜率,也就是说,曲线y=f (x) 在P (x0, f (x0))处的切线的斜率是f′(x0),于是相应的切线方程为y-y0=f′(x0) (x-x0),巧借导数几何意义“传接”的各类综合题频频出现。
【错题分析】
[错例1] (2004天津卷20(2))曲线f(x)=x3-3x,过点A(0,16)作曲线f (x)的切线,求曲线的切线方程。
误解:f (x)=3x3-3,根据导数的几何去何从意义可知,曲线的切线斜率 (0)=-3,所以曲线的切线方程为y=-3x+16。
剖析:本题错在对导数的几何意义理解有误,切线的斜率k是应是在切点处的导数,而点A (0,16) 不在曲线上。故本题应先设切点,再求斜率,写出直线的方程。
正确解法:设切点坐标 ,则切线的斜率 ,切线方程 ,又因为点M在切线上,所以 得
【典型题例】
例1:设P0 (x0,y0) 为曲线C : y=x3 (x>0)上任意一点,过P0作曲线C的切线与x轴交于Q1,过Q1作平行于y轴的直线与曲线C交于P1(x1,y1),然后再过P1作曲线C的切线交x轴于Q2,过Q2作平行于y轴的直线与曲线C交于P2(x2,y2),依此类推,作出以下各点:P0,Q1,P1,Q2,P2,Q3,…,Pn,Qn+1,…,已知x0=9,设Pn (xn,yn) (n∈N)。
(1)求出过点P0的切线方程。
(2)设xn=f (n) (n∈N),求f (n)的表达式;
(3)求 的值。
点拨 本例涉及到求切线方程的问题,其关键在于掌握切线的斜率等于切点 的导数
解析 (1)y′=3x2,∵P0 (9,93),∴切线P0Q1的斜率 ,
∴过P0点的切线即直线P0Q1的方程为y-93
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源