《用配方法解一元二次方程》教学设计
- 资源简介:
约2810字。
《用配方法解一元二次方程》教学设计
襄阳市第十九中学 李艳
一、 教材分析
1.对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次。
2.本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法。
二、 学情分析
1.知识掌握上,九年级学生学习了平方根的意义。即如果如果X2=a,那么X=± 。;他们还学习了完全平方式X2+2Xy+y2=(X+y)2.这对配方法解一元二次方程奠定了基础。
2.学生学习本节的障碍。学生对配方法怎样配系数是个难点,老师应该予以简单明白、深入浅出的分析。
3.我们老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法姐一元二次方程奠定了基础。
三、 教学目标
(一)知识技能目标
1.会用直接开平方法解形如(X+m)2=n(n≧0)
2.会用配方法解简单的数字系数的一元二次方程。
(二)能力训练目标
1.理解配方法;知道“配方”是一种常用的数学方法。
2. 了解用配方法解一元二次方程的基本步骤。
(三)情感与价值观要求
1.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力,激发学生的学习兴趣。
2.能根据具体问题的实际意义,验证结果的合理性。
四、 教学重点和难点
教学重点:用配方法解一元二次方程
教学难点:理解配方法的基本过程
五、 教学过程
教学环节
教师活动
学生活动 设计意图
一、导学
1、出示目标①.会用直接开平方法解形如(X+m)2=n(n≧0) ②.会用配方法解简单的数字系数的一元二次方程。
2、问题:①.如果X2=a,(a≧0)那么X=?
②.如果X2+2Xy+y2=9,那么X+y=?
朗读教学目标,通过设置的问题思考本节课所要学习的内容。
巩固直接开平方法解方程为配方法打下基础
二、自学
1、 填空:
① X2+8X+( )2=(X+__)2
② X2-32 X+( )2=(X--_)2
③ X2+MX+( )2=( )2
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源