《三角函数模型的简单应用》教案7
- 资源简介:
约3820字。
三角函数模型的简单应用(二)
一、导入新课
思路1.通过展示上节作业引入,学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.
思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.
二、推进新课、新知探究、提出问题
①本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?在指数、对数模型中是怎样处理搜集到的数据的?
②请做下题(2007浙江高考)若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|< )的最小正周期是π,且f(0)= ,则( )
A.ω= ,φ= B.ω= ,φ= C.ω=2,φ= D.ω=2,φ=
活动:这样的开头对学生来说是感兴趣的.教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,让学生尽快回忆到上节课的学习氛围中,使学生的思维状态进入到现在的情境中.
讨论结果:①略 ②D
三、应用示例
例1 货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
水深/米 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0
(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).
(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源