《任意角的三角函数》学案2

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修四教案
  • 文件类型: doc
  • 资源大小: 171 KB
  • 资源评级:
  • 更新时间: 2016/1/22 13:00:10
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约3070字。

  1.2.1 任意角的三角函数(二)
  [学习目标]
  1.掌握正弦、余弦、正切函数的定义域.
  2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.
  3.能利用三角函数线解决一些简单的三角函数问题.
  【温故知新】
  思考1:
  图1-2-1
  在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y)那么:
  (1)y叫做α的正弦,记作sin_α,即sin α=y;
  (2)x叫做α的余弦,记作cos_α,即cos α=x;
  (3)yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).
  【知识总结1】三角函数的定义域
  正弦函数y=sin x的定义域是R;余弦函数y=cos x的定义域是R;正切函数y=tan x的定义域是{x|x∈R且x≠kπ+π2,k∈Z}.
  思考2:在平面直角坐标系中,任意角α的终边与单位圆交于点P,过P作PM⊥x轴,过A(1,0)作AT⊥x轴,交终边或其反向延长线于点T,如图所示:
  结合三角函数的定义,你能得到sin α,cos α,tan α 与MP,OM,AT的关系吗?
  【提示】 可以,sin α=|MP|,cos α=|OM|,tan α=|AT|.
  【知识总结】
  1.有向线段:带有方向的线段.
  2.三角函数线:
  图1-2-3:
  3.三角函数的定义域
  正弦函数y=sin x的定义域是R;余弦函数y=cos x的定义域是R;正切函数y=tan x的定义域是{x|x∈R且x≠kπ+π2,k∈Z}.
  【例题详解】
  知识点一  利用三角函数线比较大小
  【例1】 分别作出2π3和4π5的正弦线、余弦线和正切线,并比较sin2π3和sin4π5,cos2π3和cos4π5,tan2π3和tan4π5的大小.
  规律方法 利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.
  【变式训练】
  1. 比较sin 1 155°与sin(-1 654°)的大小.
  2.用三角函数线比较sin 1和cos 1的大小,结果是_______________.
  3.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):
  (1)sin 23π________sin 34π;
  (2)cos 23π________cos 34π;
  (3)tan23π________tan34π.
  答案 (1)> (2)> (3)<
  知识点二 利用三角函数线解不等式
  【例2】 利用单位圆中的三角函数线,分别确定角θ的取值范围.
  (1)sin θ≥32;(2)-12≤cos θ<32.

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源