《正弦定理》教学设计1

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修五教案
  • 文件类型: doc
  • 资源大小: 154 KB
  • 资源评级:
  • 更新时间: 2015/9/10 21:58:54
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约5190字。

  教学设计
  1.1.1 正弦定理
  从容说课
  本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.
  教学重点1.正弦定理的概念;
  2.正弦定理的证明及其基本应用.
  教学难点1.正弦定理的探索和证明;
  2.已知两边和其中一边的对角解三角形时判断解的个数.
  教具准备直角三角板一个
  一、知识与技能
  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;
  2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.
  二、过程与方法
  1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;
  2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;
  3.进行定理基本应用的实践操作.
  三、情感态度与价值观
  1.培养学生在方程思想指导下处理解三角形问题的运算能力;
  2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.
  教学过程
  导入新课
  师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.
  师思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?
  生显然,边AB的长度随着其对角∠C的大小的增大而增大.
  师能否用一个等式把这种关系精确地表示出来?
  师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在Rt△ABC中,设BC =A,AC =B,AB =C,根据锐角三角函数中正弦函数的定义,有 =sinA,  =sinB,又sinC=1= ,则 .从而在直角三角形ABC中,
  .
  推进新课
  [合作探究]
  师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)
  生可分为锐角三角形和钝角三角形两种情况:
  如右图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=AsinB=BsinA,则 ,同理,可得 .从而 .
  (当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)
  正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
  .
  师是否可以用其他方法证明这一等式?
  生可以作△ABC的外接圆,在△ABC中,令BC=A,AC=B,AB=C,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明 这一关系.
  师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法.
  在△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到
  ∠BAB′=90°,∠C =∠B′,
  ∴sinC=sinB′= .
  ∴ .
  同理,可得 .
  ∴ .
  这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式
  .
  点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫.

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源