(湖北卷解析1)2014年普通高等学校招生全国统一考试数学试题(文史类)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共22道小题,约5040字。
2014年普通高等学校招生全国统一考试(湖北卷解析)
数 学(文史类)
本试题卷共5页,22题。全卷满分150分。考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。【
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1.[2014•湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=( )
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7} D.{2,5,7}
1.C [解析] 由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.
2.[2014•湖北卷] i为虚数单位,1-i1+i2=( )
A.1 B.-1 C.i D.-i
2.B [解析] 1-i1+i2=(1-i)2(1+i)2=-2i2i=-1.故选B.
3.[2014•湖北卷] 命题“∀x∈R,x2≠x”的否定是( )
A.∀x∈/R,x2≠x B.∀x∈R,x2=x
C.∃x0∈/R,x20≠x0 D.∃x0∈R,x20=x0
3.D [解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x∈R,x2≠x”的否定是“∃x0∈R,x20=x0”. 故选D.
4.[2014•湖北卷] 若变量x,y满足约束条件x+y≤4,x-y≤2,x≥0,y≥0,则2x+y的最大值是( )
A.2 B.4 C.7 D.8
4.C [解析] 作出约束条件x+y≤4,x-y≤2,x≥0,y≥0表示的可行域如下图阴影部分所示.
设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7. 故选C.
5.[2014•湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )
A.p1<p2<p3 B.p2<p1<p3
C.p1<p3<p2 D.p3<p1<p2
5.C [解析] 掷出两枚骰子,它们向上的点数的所有可能情况如下表:
1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
则p1=1036,p2=2636,p3=1836.故p1<p3<p2.故选C.
6.[2014•湖北卷] 根据如下样本数据
x 3 4 5 6 7 8
y 4.0 2.5 -0.5 0.5 -2.0 -3.0
得到的回归方程为y︿=bx+a,则( )
A.a>0,b<0 B.a>0,b>0
C.a<0,b<0 D.a<0,b>0
6.A [解析] 作出散点图如下:
由图像不难得出,回归直线y︿=bx+a的斜率b<0,截距a>0,所以a>0,b<0.故选A.
图11
7.[2014•湖北卷] 在如图11所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )21
图12
A.①和② B.③和①
C.④和③ D.④和②
7.D [解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.2
8.、[2014•湖北卷] 设a,b是关于t的方程t2cos θ+tsin θ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线x2cos2θ-y2sin2θ=1的公共点的个数为( )
A.0 B.1
C.2 D.3
8.A [解析] 由方程t2cos θ+tsin θ=0,解得t1=0,t2=-tan θ,不妨设点A(0,0),B(-tan θ,tan2θ),则过这两点的直线方程为y=-xtan θ,该直线恰是双曲线x2cos2θ-y2sin2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源