《圆锥的侧面积和全面积》教案1
- 资源简介:
约1170字。
圆锥的侧面积和全面积
教学目标
1.使学生经历了圆锥的侧面积计算公式的探索过程。
2.掌握圆锥的侧面积计算公式,会利用公式进行计算,并会解决实际问题.
3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.
4.通过圆锥侧面展示图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;回顾圆锥及其侧面展开图之间的关系.
重点•难点•疑点及解决办法
1.重点:会进行圆锥侧面积计算,计算圆锥的表面积及计算公式.[]
2.难点:圆锥侧面积计算公式的推导过程需要较强的空间想像能力,是本节的教学难点
3.疑点及解决方法: 由于学生空间想象能力较弱,对圆锥的侧面展开图是扇形,用扇形一定可以围成一个圆锥的侧面有疑惑,为此安排学生课前或课上或课下自己动手剪剪看或围围看,通过实践解决疑点.
教学过程
[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]
前面屏幕上展示的物体都是什么几何体?
在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?
答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。
[教师边演示模型,边启发提问]:
1. 给一圆锥,如何找到它的母线?圆锥的母线应具有什么性质?
2. 现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,
这个展开图是什么图形?
3.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?
4.扇形的半径其实是圆锥的什么线段?
[扇形的弧长是底面圆的周长,即 ,扇形的半径。就是圆锥的母线]
由于 ,圆锥半径已知则展开图扇形的弧长已知,圆锥母线已知则展开图
扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.
例1: 圆锥形的烟囱帽的底面直径是80cm,母线长50cm,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源