2013年中考数学复习专题讲座:数学思想方法(一)
- 资源简介:
约10460字。
2013年中考数学复习专题讲座:数学思想方法(一)
一、中考专题诠释
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.
二、解题策略和解法精讲
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲
考点一:整体思想
整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 10.(2012•德州)已知 ,则a+b等于( )
A.3 B. C. 2 D. 1
考点: 解二元一次方程组。
专题: 计算题。
分析: ①+②得出4a+4b=12,方程的两边都除以4即可得出答案.
解答: 解: ,
∵①+②得:4a+4b=12,
∴a+b=3.
故选A.
点评: 本题考查了解二元一次方程组的应用,关键是检查学生能否运用整体思想求出答案,题目比较典型,是一道比较好的题目.
运用整体思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析。运用整体思想方法,往往能起到化繁为简,化难为易的效果。
考点二:转化思想
转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
例2 (2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为 .
考点: 一次函数综合题;三角形三边关系;关于x轴、y轴对称的点的坐标。
分析: 作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.
解答: 解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.
不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.
则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).
∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.
∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).
设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源