《勾股定理》学案

  • 手机网页: 浏览手机版
  • 资源类别: 苏科版 / 初中教案 / 八年级上册教案
  • 文件类型: doc
  • 资源大小: 609 KB
  • 资源评级:
  • 更新时间: 2011/7/6 22:29:44
  • 资源来源: 会员转发
  • 资源提供: renheren [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约1760字。

  勾股定理(2)
  班级     姓名           学号                                
  学习目标:
  1、通过拼图,用面积的方法说明勾股定理的正确性.
  2、通过实例应用勾股定理,培养学生的知识应用技能.
  重 难点:1. 用面积的方法说明勾股定理的正确.2. 勾股定理的应用.
  学习过程:
  一、学前准备:
  1、阅读课本第46页到第47页,完成下列问题:
  (1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗? 
  2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明) 。          
  归纳其共有的证明思路:利用图形的割补,借助前后的面积相等形成关于三边的数量关系。
  二、合作探究:
  (一)思索、交流:
  拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________     (填“大于”、“小于”或“等于”)图③中小正方形的面积,用关系式表示为________     .

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源