《一次函数》教案16
- 资源简介:
约1640字。
§11.2.2 一次函数(二)
教学目标
1、理解一次函数的代数表达式与图象之间的对应关系。
2、能较熟练作出一次函数的图象。
教学重点
1、能熟练地作出一次函数的图象。
1、 归纳作函数图象的一般步骤。
教学难点
理解一次函数的代数表达式与图象之间的对应关系。
教学过程
Ⅰ.提出问题,创设情境
1、回顾作函数图象的一般步骤
前面我们已经学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2.在同个平面直角坐标系中画出下列函数的图象.
(1)y=-6x (2)y=-6x+5 (3)y=3x (4)y=3x+2
Ⅱ.导入新课
问题l:以上四个一次函数图象是什么形状呢?
让学生观察、讨论,得出四个函数的图象都是直线.
问题2:一次函数y=kx+b(k≠0)的图象都是一条直线吗?举例验证.
让学生猜想,举例验证,发现一次函数y=kx+b(k≠0)的图象是一条直线。指出这条直线通常也称为直线y=kx+b(b≠0),特别地,正比例函数y=kx(k≠0)的图象是经过(0,0)的一条直线.
问题3:几个点可以确定一条直线?
问题4:画一次函数图象时,只要取几个点?
只要取两点。今后画一次函数的图象,只要取两点再过两点画直线即可.
问题5:观察“做一做”画出的四个函数的图象,如图所示,比较下列各对一次函数的图象有什么共同点,有什么不同点.
(1)y=-6x与y=-6x+2
(2)y=12 x与y=12 x+2
(3)y=-6x+2与y=12 x+2
能否从中发现一些规律?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源