《解三角形应用举例》ppt7(7份)
- 资源简介:
共17张。指导测量,突出应用,适合新课教学。
一、教学内容解析:
本节课的内容是《普通高中课程标准实验教科书数学》人教A版必修5第一章《解三角形》1.2《应用举例》的第二课时,测量底部不可到达的建筑物高度问题.在第一课时学生学习了应用正弦定理和余弦定理解决有关测量距离的问题,初步了解从实际背景中抽象数学模型,将“不可测”问题转化为“可以算”的问题,从而解决实际问题的研究方法.本节课是解三角形应用举例的延伸,继续探究底部不可到达的建筑物等的高度测量问题.
解三角形知识本身是从人类长期的生产和生活实践中产生和发展起来的,在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识,本节内容具有显著的实践性,通过从实际背景中提出问题、分析问题、建构数学模型、应用数学知识计算,进而解决问题,使学生进一步巩固所学的知识,提高学生分析和解决实际问题的能力、动手操作的能力以及用数学语言表达和交流的能力,增强学生应用数学的意识,培养学生的数学建模能力.
本节课的教学重点:
1.通过对实地测量任务的交流展示,体会数学建模过程;
2.通过对设计方案的分析,理解建构三角形模型的一般方法;
3.结合用测量工具收集的数据,巩固应用正弦定理和余弦定理解三角形问题.
二、教学目标解析:
(一) 教学目标:
1.体会从实际情境中发现问题——设计方案建构数学模型——运用正弦定理、余弦定理等知识进行计算求解——检验的数学建模过程,培养学生的数学建模素养;
2.归纳建构三角形模型的一般方法,解决有关底部不可到达的建筑物高度测量的问题;
3.操作简单的测量工具测量仰角、距离等,收集数据,进行解三角形运算,使学生掌握正弦定理和余弦定理的应用;
4.通过小组交流汇报的形式展示数学建模过程,让学生体会数学建模思想,培养学生的数学表达能力;
5.创设问题情境、组织讨论交流提高学生参与学习的热情,通过小组合作学习方式,培养学生的合作意识和合作学习的能力,发展学生的创新意识和实践能力.
(二)目标解析:
1.高中数学学科素养包含数学抽象、逻辑推理、几何直观、数学运算、数据分析和数学建模六个方面,本节课重点培养学生的数学建模素养.数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.本节课从实际背景出发,让学生亲自经历提出问题、建构模型、应用数学知识运算得到数学结果,反复检验得到符合实际的结果这样一个数学建模过程,培养学生数学建模素养;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源