《一元二次方程根与系数的关系》教案2
- 资源简介:
约1640字。
一元二次方程的根与系数的关系
(教学案例)
教学内容:一元二次方程的根与系数的关系
教学目标:
知识与技能目标:掌握一元二次方程的根与系数的关系并会初步应用.
过程与方法目标:培养学生分析、观察、归纳的能力和推理论证的能力.
情感与态度目标:1.渗透由特殊到一般,再由一般到特殊的认识事物的规律;
2.培养学生去发现规律的积极性及勇于探索的精神.
教学重、难点:
重点:根与系数的关系及其推导.
难点:正确理解根与系数的关系,灵活运用根与系数的关系。
教学程序设计:
一、复习引入:
1、写出一元二次方程的一般式和求根公式.
请两位同学写在黑板上,其他同学在纸上默写,交换检查,互相更正。对出错严重之处加以强调。
2、解方程①x2-5x+6=0,②-2x2-x+3=0.
观察、思考两根和、两根积与系数的关系.
提问:所有的一元二次方程的两个根都有这样的规律吗?
观察、思考两根和、两根积与系数的关系.
在教师的引导和点拨下,由学生大胆猜测,得出结论。
二、探究新知
推导一元二次方程两根和与两根积和系数的关系.
设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.试计算(1)x1+x2(2)x1*x2
一名学生在板书,其它学生在练习本上推导.过程略。
由此得出,一元二次方程的根与系数的关系:
结论1.如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么:
教师举例说明,学生理解记忆。
三、反馈训练应用提高
练习1.(口答)下列方程中,两根的和与两根的积各是多少?
(1)x2-2x+1=0;(2)x2-9x+10=0;
(3)4x2-7x+1=0;(4)-9x+x2=0;
(5)x2=9
此组练习的目的是更加熟练掌握根与系数的关系.
根据题目的计算难易选择不同层次的学生回答,对答对的同学给与充分的表扬,对答错者应引导其掌握方法,并多给一次机会,让其得以消化和巩固,同时增强学生自信,提高学习积极性。
反思(1)(2)
导出结论2:如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1•x2=q.
注意:结论1具有一般形式,结论2有时给研究问题带来方便.
四、一元二次方程根与系数关系的应用:
1、验根.
(口答)判定下列各方程后面的两个数是不是它的两个根.
(1)x2-6x+7=0;(-1,7)
(2)-3x2-5x+2=0;(5/3,-2/3)
(3)x2+9=6x (3,3)
要求:学生先思考,再举手抢答,调动学习气氛。
注意:①将方程化为标准形式
②计算准确,公式要用对
2、已知方程一根,求另一根.
例:已知方程5x2+kx-6=0的根是2,求它的另一根及k的值.
先由学生用自己的办法解答,老师巡视后,请具有代表性的解法的同学将解法板书在黑板上,经点评后,有同学评价各种解法的优劣,学生进行比较,体验方法的优越性,从而认识到根与系数关系的应用价值。
小结:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源