江西省宜春三中2016届高考复习理科数学专题汇编:函数与导数
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约9560字。
函数与导数
函数及其表示
1. 设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f23π6=( )
A.12 B.32
C.0 D.-12
A [解析] 由已知可得,f23π6=f17π6+sin17π6=f11π6+sin11π6+sin17π6 =f5π6+sin5π6+sin11π6+sin17π6=2sin 5π6+sin-π6=sin5π6=12.
2. 下列函数中,在区间(0,+∞)上为增函数的是( )
A.y=x+1 B.y=(x-1)2
C.y=2-x D.y=log0.5(x+1)
A [解析] 由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A.
3. 已知函数f(x)=x2+1,x>0,cos x, x≤0,则下列结论正确的是( )
A.f(x)是偶函数
B.f(x)是增函数
C.f(x)是周期函数
D.f(x)的值域为[-1,+∞)
D [解析] 由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数;
当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;
当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1];
∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞).
4. 函数f(x)=ln(x2-x)的定义域为( )
A.(0,1] B.[0,1]
C.(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞)
C [解析] 由x2-x>0,得x>1或x<0.
5. 函数f(x)=1(log2x)2-1的定义域为( )
A.0,12 B.(2,+∞)
C. 0,12∪(2,+∞) D. 0,12∪[2,+∞)
C [解析] 根据题意得,x>0,(log2)2-1>0,解得x>0,x>2或x<12.故选C.
反函数
6. 函数y=f(x)的图像与函数y=g(x)的图像关于直线x+y=0对称,则y=f(x)的反函数是( )
A.y=g(x) B.y=g(-x)
C.y=-g(x) D.y=-g(-x)
D [解析] 设(x0,y0)为函数y=f(x)的图像上任意一点,其关于直线x+y=0的对称点为(-y0,-x0).根据题意,点(-y0,-x0)在函数y=g(x)的图像上,又点(x0,y0)关于直线y=x的对称点为(y0,x0),且(y0,x0)与(-y0,-x0)关于原点对称,所以函数y=f(x)的反函数的图像与函数y=g(x)的图像关于原点对称,所以-y=g(-x),即y=-g(-x).
函数的单调性与最值
7. 下列函数中,在区间(0,+∞)上为增函数的是( )
A.y=x+1 B.y=(x-1)2
C.y=2-x D.y=log0.5(x+1)
A [解析] 由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A.
8. 已知函数f(x)=x2+1,x>0,cos x, x≤0,则下列结论正确的是( )
A.f(x)是偶函数
B.f(x)是增函数
C.f(x)是周期函数
D.f(x)的值域为[-1,+∞)
D [解析] 由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数;
当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;
当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1];
∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞).
9. 设函数f(x)=1(x2+2x+k)2+2(x2+2x+k)-3,其中k<-2.
(1)求函数f(x)的定义域D(用区间表示);
(2)讨论函数f(x)在D上的单调性;
(3)若k<-6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).
10. 设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=-4x2+2,-1≤x<0,x, 0≤x<1,则f32=________.
1 [解析] 由题意可知,f32=f2-12=f-12=-4-122+2=1.
11. 以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:
①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;
②函数f(x)∈B的充要条件是f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;
④若函数f(x)=aln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.
其中的真命题有________.(写出所有真命题的序号)
.①③④ [解析] 若f(x)∈A,则f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确.
取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得f(x)的值域包含于[-M,M]=[-1,1],但此时f(x)没有最大值和最小值,故②错误.
当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(a0)=b-g(a0),即f(a0)+g(a0)=b0∉[-M,M],故③正确.
对于f(x)=aln(x+2)+xx2+1 (x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a=0,此时f(x)=xx2+1 (x>-2).
易知f(x)∈-12,12,所以存在正数M=12,使得f(x)∈[-M,M],故④正确
函数与导数
函数及其表示
1. 设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f23π6=( )
A.12 B.32
C.0 D.-12
A [解析] 由已知可得,f23π6=f17π6+sin17π6=f11π6+sin11π6+sin17π6 =f5π6+sin5π6+sin11π6+sin17π6=2sin 5π6+sin-π6=sin5π6=12.
2. 下列函数中,在区间(0,+∞)上为增函数的是( )
A.y=x+1 B.y=(x-1)2
C.y=2-x D.y=log0.5(x+1)
A [解析] 由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A.
3. 已知函数f(x)=x2+1,x>0,cos x, x≤0,则下列结论正确的是( )
A.f(x)是偶函数
B.f(x)是增函数
C.f(x)是周期函数
D.f(x)的值域为[-1,+∞)
D [解析] 由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数;
当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;
当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1];
∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞).
4. 函数f(x)=ln(x2-x)的定义域为( )
A.(0,1] B.[0,1]
C.(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞)
C [解析] 由x2-x>0,得x>1或x<0.
5. 函数f(x)=1(log2x)2-1的定义域为( )
A.0,12 B.(2,+∞)
C. 0,12∪(2,+∞) D. 0,12∪[2,+∞)
C [解析] 根据题意得,x>0,(log2)2-1>0,解得x>0,x>2或x<12.故选C.
反函数
6. 函数y=f(x)的图像与函数y=g(x)的图像关于直线x+y=0对称,则y=f(x)的反函数是( )
A.y=g(x) B.y=g(-x)
C.y=-g(x) D.y=-g(-x)
D [解析] 设(x0,y0)为函数y=f(x)的图像上任意一点,其关于直线x+y=0的对称点为(-y0,-x0).根据题意,点(-y0,-x0)在函数y=g(x)的图像上,又点(x0,y0)关于直线y=x的对称点为(y0,x0),且(y0,x0)与(-y0,-x0)关于原点对称,所以函数y=f(x)的反函数的图像与函数y=g(x)的图像关于原点对称,所以-y=g(-x),即y=-g(-x).
函数的单调性与最值
7. 下列函数中,在区间(0,+∞)上为增函数的是( )
A.y=x+1 B.y=(x-1)2
C.y=2-x D.y=log0.5(x+1)
A [解析] 由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A.
8. 已知函数f(x)=x2+1,x>0,cos x, x≤0,则下列结论正确的是( )
A.f(x)是偶函数
B.f(x)是增函数
C.f(x)是周期函数
D.f(x)的值域为[-1,+∞)
D [解析] 由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数;
当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;
当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1];
∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞).
9. 设函数f(x)=1(x2+2x+k)2+2(x2+2x+k)-3,其中k<-2.
(1)求函数f(x)的定义域D(用区间表示);
(2)讨论函数f(x)在D上的单调性;
(3)若k<-6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).
10. 设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=-4x2+2,-1≤x<0,x, 0≤x<1,则f32=________.
1 [解析] 由题意可知,f32=f2-12=f-12=-4-122+2=1.
11. 以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:
①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;
②函数f(x)∈B的充要条件是f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;
④若函数f(x)=aln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.
其中的真命题有________.(写出所有真命题的序号)
.①③④ [解析] 若f(x)∈A,则f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确.
取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得f(x)的值域包含于[-M,M]=[-1,1],但此时f(x)没有最大值和最小值,故②错误.
当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(a0)=b-g(a0),即f(a0)+g(a0)=b0∉[-M,M],故③正确.
对于f(x)=aln(x+2)+xx2+1 (x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a=0,此时f(x)=xx2+1 (x>-2).
易知f(x)∈-12,12,所以存在正数M=12,使得f(x)∈[-M,M],故④正确
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源