《平面》教案3
- 资源简介:
约1220字。
2.1.1 平面
【教学目标】
1.使学生掌握平面的表示法,点、直线与平面的关系,有关平面的三个公理,
2.会用符号表示图形中点、直线、平面之间的关系。
【教学重难点】
教学重点:三个公理的教学是重点。
教学难点:公理的理解与运用是难点。
【教学过程】
1.提问:在长方体中,顶点、棱所在的直线、侧面、底面之间的关系应该怎么说呢?
2.新课
(1)、生活中的平面
生活中的一些物体通常呈平面形,如课桌面、黑板面、海面都是平面,几何里说
的平面(plane)是从这样的一些物体中抽象出来的,但是几何里的平面限延展的。
(2)、平面的画法与表示法
常常把水平的平面画成一个平行四边形,锐角通常画成45°,且横边等于其邻边长的2倍
平面表示:平面通常用α、β、γ写在代表平面的平行四边形的一个角上,如平面α、平面β、平面γ,也可以用平行四边形的四个顶点或相对的两个顶点的大写英文字母来表示,如平面ABCD,或平面AC或平面BD。
如果一个平面被另一个平面遮住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如右图。
平面内有无数个点,平面可以看成是点的集合,点P在平面α内,记作P∈α,点Q在平面α外,记作Q α。
(3)、公理1
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
此公理可以判断直线是否在平面内。
点动成线、线动成面。直线、平面都可以看成点的集合。点P在直线l上,记作P∈l,点P在直线l外,记作P l。如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l,记作l α;否则,就说直线l在平面α外,记作l α。
公理1也可以表示:A∈l,B∈l,且A∈α,B∈α l α
(4)、公理2
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源