《矩形》教案4
- 资源简介:
约2650字。
19.2.1 矩形(1)
第一课时
教学目标
知识与技能:
了解矩形的有关概念,理解并掌握矩形的有关性质.
过程与方法:
经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.
情感态度与价值观:
培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.
重难点、关键
重点:掌握矩形的性质,并学会应用.
难点:理解矩形的特殊性.
关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.
教学准备
教师准备:投影仪,收集有关矩形的图片,制作教具.(图19.2-2)
学生准备:复习平行四边形性质,预习矩形这节内容.
学法解析
1.认知起点:已经学习了三角形、平行四边形,积累了一定的经验的 基础上学习本节课内容.
2.知识线索:情境与操作→平行四边形→矩形→矩形性质.
3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.
教学过程
一、联系生活,形象感知
【显示投影片】
教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.
矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).
教师活动:介绍完矩形概念后,为了加深理解也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:
问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)
学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,是属于 平行四边形,因此它具有平行四边形所有性质.
问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)
学生活动:由平行四边形对边平行以及刚才变角∠α为90°可以得到∠α的补角也是90°,从而得到矩形四个角都是直角.
评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.
教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).
学生活动:观察发现:矩形的两条对角线相等,口述证明
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源