《公式法》教案5
- 资源简介:
约3260字。
《公式法》教案
课时安排
1课时
从容说课
公式法是解一元二次方程的通法,是配方法的延续,即它实际上是配方法的一般化和程式化.利用它可以更为简捷地解一元二次方程.
本节课的重、难点是利用求根公式来解一元二次方程.
公式法的意义在于:对于任意的一元二次方程,只要将方程化为一般形式,然后确定a、b、c的值,在b2-4ac≥0的前提条件下,将a、b、c的值代入求根公式即可求出解.
因为掌握求根公式的关键是掌握公式的推导过程,而掌握推导过程的关键又是掌握配方法,所以在教学中,首先引导学生自主探索一元二次方程的求根公式,然后在师生共同的讨论中,得到求根公式,并利用公式解一些简单的数字系数的一元二次方程.
第六课时
课 题
§ 2.3 公式法
教学目标
(一)教学知识点
1.一元二次方程的求根公式的推导
2.会用求根公式解一元二次方程
(二)能力训练要求
1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力.
2.会用公式法解简单的数字系数的一元二次方程.
(三)情感与价值观要求
1.通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯.
教学重点
一元二次方程的求根公式.
教学难点
求根公式的条件:b2-4ac≥0
教学方法
讲练相结合
教具准备
投影片五张
第一张:复习练习(记作投影片§2.3 A)
第二张:试一试(记作投影片§2.3B)
第三张:小亮的推导过程(记作投影片§2.3 C)
第四张:求根公式(记作投影片§2.3 D)
第五张:例题(记作投影片§2.3 E)
教学过程
Ⅰ.巧设现实情景,引入课题
[师]我们利用三节课的时间学习了一元二次方程的解法.下面来做一练习以巩固其解法.(出示投影片§2.3 A)
1.用配方法解方程2x2-7x+3=0.
[生甲]解:2x2-7x+3=0,
两边都除以2,得x2-x+=0.
移项,得;x2-x=-.
配方,得x2-x+(-)2=-+(-)2.
两边分别开平方,得
x-=±
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源