2011届高考数学一轮复习精品题集之导数
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约6990字。
导数
选修1-1 第3章 导数及其运用
§3.1导数概念及其几何意义
重难点:了解导数概念的实际背景,理解导数的几何意义.
考纲要求:①了解导数概念的实际背景.
②理解导数的几何意义.
经典例题:利用导数的定义求函数y=|x|(x≠0)的导数.
当堂练习:
1、在函数的平均变化率的定义中,自变量的的增量 满足( )
A >0 B <0 C D =0
2、设函数 ,当自变量 由 改变到 时,函数值的改变量是( )
A B C D
3、已知函数 的图像上一点(1,2)及邻近一点 ,则 等于( )
A 2 B 2 C D 2+
4、质点运动规律 ,则在时间 中,相应的平均速度是( )
A B C D
5.函数y=f(x)在x=x0处可导是它在x=x0处连续的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则 等于
A.4Δx+2Δx2 B.4+2Δx C.4Δx+Δx2 D.4+Δx
7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则
A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在
8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
9.设函数f(x)在x0处可导,则 等于
A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0)
10.设f(x)=x(1+|x|),则f′(0)等于
A.0 B.1 C.-1 D.不存在
11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是___.
12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________.
13.设f(x)在点x处可导,a、b为常数,则 =_____.
14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m,时间单位:s),求小球在t=5时的瞬时速度________.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源