《函数的极值与导数》教案1(共2课时)
- 资源简介:
约4060字。
《函数的极值与导数》教案
§1.3.2函数的极值与导数(1)
【教学目标】
1.理解极大值、极小值的概念.
2.能够运用判别极大值、极小值的方法来求函数的极值.
3.掌握求可导函数的极值的步骤.
【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤.
【内容分析】
对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号.
【教学过程】
一、复习引入:
1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内 >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内 <0,那么函数y=f(x) 在为这个区间内的减函数.
2.用导数求函数单调区间的步骤:①求函数f(x)的导数f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间.
二、讲解新课:
1.极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点.
2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.
3.极大值与极小值统称为极值.
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点:
(ⅰ)极值是一个局部概念 由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.
(ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个.
(ⅲ)极大值与极小值之间无确定的大小关系 即一个函数的极大值未必大于极小值,如下图所示, 是极大值点, 是极小值点,而 >
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源