约1810字。
《两个三角形相似的判定》教案
教学目标:
1.经历“有两个角对应相等的两个三角形相似”的探索过程.
2.能运用“有两个角对应相等”的条件判定两个三角形相似.
重点和难点:
1.本节教学的重点是相似三角形的判定方法:有两个角对应相等的两个三角形相似.
2.有两个角相等的三角形是相似三角形的探索过程比较复杂,是本节教学的难点.
知识要点:
1、有两个角对应相等的两个三角形相似.
如图,∵∠A=∠A′,∠B=∠B′
∴△ABC∽△A′B′C′
2、基本图形
(1)如图甲,若DE∥BC,则△ADE∽△ABC.
(2)如图乙,若AC∥DB,则△AOC∽△BOD.
3、常见图形
(1)如图1,若∠AED=∠B,则△ADE∽△ACB;
(2)如图2,若∠ACD=∠B,则△ACD∽△ABC;
(3)如图3,若∠BAC=90°,AD⊥BC,则△ABC∽△DBA∽△DAC.
重要方法:
1、有一个锐角相等的两个直角三角形相似;
2、识别三角形相似的常用思路:
(1)当条件中有平行线时,找两对对应角相等;
(2)当条件中有一对相等的角(对顶角或公共角)时,可考虑再找一对相等的角;
(3)两个等腰三角形,可以找顶角相等或找一对底角相等.
教学过程
一.创设情境,导入新课
1、如图,在方格图中△ABC,DE∥BC,问:△ADE∽△ABC吗?说明理由.
2、如图2,A、B、C、D、E、F、G都在小方格的的顶点上,问:DE∥BC∥FG吗?
△ADE∽△ABC∽△AFG?
二.合作学习,探索新知
1、合作学习:
如图4-14,在△ABC中,点D,E分别在AB,AC上,且DE∥BC.则△ADE与△ABC相似吗?
议一议:这两个三角形的三个内角是否相等?
量一量:这两个三角形的边长,它们是否对应成比例?
追问:若点D、E分别在AB、AC的反向延长线上,△ADE与△ABC是否还相似呢?
定理:平行于三角形一边的直线和其他两边(或它们的反向延长线)相交,所构成的三角形与原三角形相似.
定理的几何语言表述:
∵DE∥BC
∴△ADE∽△ABC
2、结合预备定理探求三角形相似的判定定理一
判定定理一:有两个角对应相等的两个三角形相似.
简称:两角对应相等,两三角形相似.
(由学生根据命题的题设和结论,写出已知求证)
已知:在△ABC 和△A′B′C′中, ∠A=∠A′,∠B=∠B′
求证:△ABC∽△A′B′C′
分析:要证两个三角形相似,
目前只有两个途径。一个是三角形相似的定义,(显然条件不具备);另一个是上面学习的利用平行线来判定三角形相似的定理。为了使用它,就必须创造具备定理的基本图形的条件。怎样创造呢?(即怎样把小的三角形移动到大的三角形上)
证明:在△A′B′C′的边A′B′、A′C′上,分别截取A′D=AB, A′E=AC,连结DE。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源