约4170字。
椭圆的简单几何性质
【基础知识导引】
1.从图形直观看,椭圆有哪些几何性质?如何利用方程来研究?
2.椭圆的离心率与椭圆的形状有着怎样的关系?为什么?
3.椭圆的第二定义是什么?利于处理哪些类型的问题?
4.如果一条直线与椭圆相离,如何求椭圆上的点到这条直线的距离的最大值和最小值?
【重点难点解析】
1.椭圆的简单几何性质
以方程 为例:
(1)范围:由方程可得|x|≤a,|y|≤b,因此椭圆位于直线x=±a,y=±b所围成的矩形里。
(2)对称性:椭圆既是轴对称图形,也是中心对称图形,它有两根对称轴,一个对称中心,一般地对于曲线f(x,y)=0,若以-y代y方程不变,则曲线关于x轴对称,若以-x代x方程不变,则曲线关于y轴对称;若同时以-x代x,以-y代y方程不变,那么曲线关于原点对称,应结合点P(x,y)分别关于x轴、y轴、原点的对称点的坐标来理解和记忆。
(3)顶点:共有四个,即 ,它们就是椭圆与坐标轴的交点,画椭圆时,可先画出这四个顶点,也就画出了椭圆的大致形状。
(4)离心率: ,在椭圆中,∵a>c>0,∴0<e<1。
若设a不变,∵ ,易见,e越大,b越小,椭圆越扁;e越小,b越大,椭圆越圆,因此,离心率反映了椭圆的扁平程度。
2.椭圆的第二定义
椭圆也可以看成是动点到定点F和到定直线1距离之比等于常数e(0<e<1)的点的轨迹,这就是椭圆的第二定义,在这个定义中,定点F是椭圆的一个焦点,定直线1叫做与该焦点对应的一条准线,而常数e就是椭圆的离心率。
由对称性可知,椭圆有两条准线,对于椭圆 ,与F(c,0)对应的准线方程是 ,与F′(-c,0)对应的准线方程是 ,如果椭圆方程是 ,则两条准线方程是 ,由第二定义可知,若M是椭圆上任一点,直线1是与焦点F对应的准线,M到1的距离为d,则|MF|=ed,利用这一关系可得椭圆上一点到焦点的距离转化为它到相应准线的距离,使运算简化。
3.椭圆的参数方程
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源