2018高考数学(理)二轮复习闯关导练试卷(20份)

  • 手机网页: 浏览手机版
  • 资源类别: 通用 / 高中试卷 / 高考专项试卷
  • 文件类型: doc
  • 资源大小: 7.38 MB
  • 资源评级:
  • 更新时间: 2018/3/1 10:57:07
  • 资源来源: 会员转发
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

  此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。

2018高考数学(理)二轮复习闯关导练打包20份 Word版含解析
2018高考数学(理)二轮复习闯关导练:基础模拟(一) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:大题演练争高分(二) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:大题演练争高分(六) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:大题演练争高分(三) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:大题演练争高分(四) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:大题演练争高分(五) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:大题演练争高分(一) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:基础模拟(二) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:基础模拟(三) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:基础模拟(四) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:小题训练多抢分(二) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:小题训练多抢分(六) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:小题训练多抢分(三) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:小题训练多抢分(四) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:小题训练多抢分(五) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:小题训练多抢分(一) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:押题模拟(二) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:押题模拟(三) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:押题模拟(四) Word版含解析.doc
2018高考数学(理)二轮复习闯关导练:押题模拟(一) Word版含解析.doc
  大题演练争高分(二)
  时间:60分钟 满分:70分
  “保3题”试题部分
  17.(导学号:50604129)(2017•萍乡调研)(本小题满分12分)
  已知函数gx=34-12sinxcosx-32sin2x,将其图象向左移π4个单位,并向上移12个单位,得到函数fx=acos2x+φ+ba>0,b∈R,φ䥺SymbolcB@ π2的图象.
  (Ⅰ)求实数a,b,φ的值;
  (Ⅱ)设函数φx=gx-3fx,x∈0,π2,求函数φx的单调递增区间和最值.
  18.(导学号:50604130)(2017•新余摸底考试)(本小题满分12分)
  已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥平面ABCD,且PA=AD=DC,AB=2AD,M是PB的中点.
  (Ⅰ)证明:平面PAD⊥平面PCD;
  (Ⅱ)求AC与PB所成角的余弦值;
  (Ⅲ)求平面AMC与平面BMC所成二面角的余弦值.
  19.(导学号:50604131)(2017•商丘质检)(本小题满分12分)
  一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.
  (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
  (Ⅱ)若从袋中任意抽取2个球,记下编号,放回袋中,再任意抽取2个球,这样抽取3次,求恰有2次抽到6号球的概率;
  (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X的分布列及期望.
  “争2题”试题部分
  20.(导学号:50604132)(2017•随州联考)(本小题满分12分)
  已知椭圆C:x2a2+y2b2=1(a>b>0)过点(1,32),且离心率e=12.
  (Ⅰ)求椭圆C的标准方程;
  (Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),椭圆的右顶点为D,且满足DA→•DB→=0,试判断直线l是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
  大题演练争高分(六)
  时间:60分钟 满分:70分
  “保3题”试题部分
  17.(导学号:50604157)(2017•扬州质检)(本小题满分12分)
  已知函数f(x)=32sin 2x-cos2 x-12,x∈R.
  (Ⅰ)求函数f(x)的最小正周期;
  (Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,sin B=2sinA,求a,b的值.
  18.(导学号:50604158)(2017•盘锦调研)(本小题满分12分)
  已知甲、乙两位同学8次数学单元测试的成绩构成如下所示的茎叶图,且甲同学成绩的平均数比乙同学成绩的平均数小2.
  (Ⅰ)求m的值以及乙同学成绩的方差;
  (Ⅱ)若数学测试的成绩高于85分(含85分),则该同学不用参加补考.根据上述成绩,视频率为概率,估计乙同学在接下来的三次数学单元测试中补考次数X的分布列与数学期望.
  19.(导学号:50604159)(2017•长治联考)(本小题满分12分)
  已知四棱锥P-ABCD如图所示,其中四边形ABCD是等腰梯形,且∠ADC+∠DAB=180°,AB=2AD=2DC=2BC=4,PA=PC,平面PAC⊥平面ABCD,点P到平面ABCD的距离为3.
  (Ⅰ)求证:PA⊥BC;
  (Ⅱ)求直线BP与平面PCD所成角的正弦值.
  “争2题”试题部分
  20.(导学号:50604160)(2017•鹰潭调研)(本小题满分12分)
  已知函数f(x)=(ax2+bx+c)ex(a>0)的导函数y=f′(x)的两个零点为-3和0.
  (Ⅰ)求f(x)的单调区间;
  (Ⅱ)若f(x)的极小值为-1,求f(x)的极大值.
  21.(导学号:50604161)(2017•烟台联考)(本小题满分12分)
  已知椭圆x2a2+y2b2=1(常数a,b>0,且a>b)的左、右焦点分别为F1,F2,M,N为短轴的两个端点,且四边形F1MF2N是面积为4的正方形.
  (Ⅰ)求椭圆的方程;
  (Ⅱ)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆x2a2+y2b2=1的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值.
  请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分.作答时标出所选题目的题号.
  22.(导学号:50604162)(2017•东营模拟)(本小题满分10分) 选修4-4:坐标大题演练争高分(三)
  时间:60分钟 满分:70分
  “保3题”试题部分
  17.(导学号:50604136)(2017•昆明调研)(本小题满分12分)
  已知正项等比数列an满足a4=2a2+a3,a23=a6.
  (Ⅰ)求an的通项公式;
  (Ⅱ)求an•log2an的前n项和Tn.
  18.(导学号:50604137)(2017•黄石二模)(本小题满分12分)
  某人为研究中学生的性别与每周课外阅读量这两个变量的关系,随机抽查了100名中学生,得到频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
  (Ⅰ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生周课外阅读时间的平均数.
  (Ⅱ)在样本数据中,有20位女生的每周课外阅读时间超过4小时,15位男生的每周课外阅读时间没有超过4小时.
  ①请画出每周课外阅读时间与性别列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”;
  P(K2≥k0) 0.10 0.05 0.010 0.005
  k0 2.706 3.841 6.635 7.879
  附:K2=nad-bc2a+bc+da+cb+d
  ②若从样本的女生中随机抽取2人调查,其中每周课外阅读时间超过4小时的人数为X,求X的分布列与期望.
  19.(导学号:50604138)(2017•铜川联考)(本小题满分12分)
  已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面.
  (Ⅰ)求证:PB⊥CD;
  (Ⅱ)若PB与圆O所在平面所成角为π4,且∠CAD=2π3,求二面角C-PB-D的余弦值.
  “争2题”试题部分
  20.(导学号:50604139)(2017•遵义调研)(本小题满分12分)
  已知椭圆G:x2a2+y2b2=1(a>b>0)的离心率为12,过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限).
  (Ⅰ)求椭圆G的方程;
  (Ⅱ)已知A为椭圆G的左顶点,平行于AM的直线l与椭圆G相交于B,C两点,请判断直线MB,MC是否关于直线m对称,并说明理由.
  21.(导学号:50604140)(2017•北海质检)(本小题满分12分)
  已知函数f(x)=x2+b图象上的点P(2,1)关于直线y=-x的对称点Q在函数g(x)=ln(-x)+a上.
  (Ⅰ)设h(x)=g(x)-f(x),求h(x)的最大值;
  (Ⅱ)对任意x1∈[-e,-1],x2∈[e,e2],不等式2kgx1+2+f(x1)-6<lnfx2+3恒成立,求实数k的取值范围.

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源