山东省滕州市第一中学东校人教必修一数学导学案:31 函数与方程(3课时)
3.1.1方程的根与函数的零点.doc
3.1.2用二分法求方程的近似解.doc
3.1.3函数与方程.doc
学案一 方程的根与函数的零点
学习目标
1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2. 掌握零点存在的判定定理.
学习过程
一、课前准备
(预习教材P86~ P88,找出疑惑之处)
复习1:一元二次方程 +bx+c=0 (a 0)的解法.
判别式 = .
当 0,方程有两根,为 ;
当 0,方程有一根,为 ;
当 0,方程无实根.
复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?
判别式 一元二次方程 二次函数图象
二、新课导学
※ 学习探究
探究任务一:函数零点与方程的根的关系
问题:
① 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .
② 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .
③ 方程 的解为 ,函数 的图象与x轴有 个交点,坐标为 .
根据以上结论,可以得到:
一元二次方程 的根就是相应二次函数 的图象与x轴交点的 .
学案三 函数与方程(练习)
学习目标
1. 体会函数的零点与方程根之间的联系,掌握零点存在的判定条件;
2. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
3. 初步形成用图象处理函数问题的意识.
学习过程
一、课前准备
(预习教材P86~ P94,找出疑惑之处)
复习1:函数零点存在性定理.
如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.
复习2:二分法基本步骤.
①确定区间 ,验证 ,给定精度ε;
②求区间 的中点 ;
③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );
④判断是否达到精度ε;即若 ,则得到零点零点值a(或b);否则重复步骤②~④.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源