2016届高考总复习数学文科第二章《函数概念与基本初等函数》教案(10份)
- 资源简介:
2016届高考总复习数学文科第二章函数概念与基本初等函数(9份)
2016届高考总复习数学文科第二章函数概念与基本初等函数第1讲函数及其表示.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第2讲函数的单调性与最值.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第3讲函数的奇偶性与周期性.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第4讲二次函数与幂函数.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第5讲指数与指数函数.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第6讲对数与对数函数.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第7讲函数的图象.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第8讲函数与方程.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数第9讲函数模型及其应用.doc
2016届高考总复习数学文科第二章函数概念与基本初等函数阶段回扣练2函数概念与基本初等函数.doc
第1讲 函数及其表示
最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用.
知 识 梳 理
1.函数的基本概念
(1)函数的定义
一般地,设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
(2)函数的定义域、值域
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
(3)函数的三要素是:定义域、值域和对应关系.
(4)表示函数的常用方法有:解析法、列表法和图象法.
(5)分段函数
在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这种函数称为分段函数.
分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
2.函数定义域的求法
类型 x满足的条件
2nfx,n∈N*
f(x)≥0
1fx与[f(x)]0
f(x)≠0
logaf(x) f(x)>0
……
第3讲 函数的奇偶性与周期性
最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
知 识 梳 理
1.函数的奇偶性
奇偶性 定义 图象特点
偶函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数 关于y轴对称
奇函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数 关于原点对称
2.奇(偶)函数的性质
(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).
(2)在公共定义域内
①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.
②两个偶函数的和函数、积函数是偶函数.
③一个奇函数,一个偶函数的积函数是奇函数.
(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.
3.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周
……
第5讲 指数与指数函数
最新考纲 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及指数函数的单调性,掌握指数函数图象通过的特殊点;4.知道指数函数是一类重要的函数模型.
知 识 梳 理
1.分数指数幂
(1)规定:正数的正分数指数幂的意义是amn =nam(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是a-mn =1nam(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.
(2)有理指数幂的运算性质:aras=ar+s,(ar)s=ars,(ab)r=arbr,其中a>0,b>0,r,s∈Q.
2.指数函数的图象与性质
y=ax a>1 0<a<1
图象
定义域 (1)R
值域 (2)(0,+∞)
性质 (3)过定点(0,1)
(4)当x>0时,y>1;当x<0时,0<y<1 (5)当x>0时,0<y<1;当x<0时,y>1
(6)在(-∞,+∞)上是增函数 (7)在(-∞,+∞)上是减函数
诊 断 自 测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)(4-4)4=-4.(×)
(2)(-1)24 =(-1)12 =-1.(×)
(3)函数y=2x-1是指数函数.(×)
……
阶段回扣练2 函数概念与基本初等函数Ⅰ
(建议用时:90分钟)
一、选择题
1.(2014•山西四校联考)函数y=1x+x+4的定义域为( )
A.[-4,+∞) B.(-4,0)∪(0,+∞)
C.(-4,+∞) D.[-4,0)∪(0,+∞)
解析 由题意知x≠0,x+4≥0,得x≥-4且x≠0.
答案 D
2.(2014•湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )
A.f(x)=1x2 B.f(x)=x2+1
C.f(x)=x3 D.f(x)=2-x
解析 A中f(x)=1x2是偶函数,且在(-∞,0)上是增函数,故A满足题意.B中f(x)=x2+1是偶函数,但在(-∞,0)上是减函数.C中f(x)=x3是奇函数.D中f(x)=2-x是非奇非偶函数.故B,C,D都不满足题意.
答案 A
3.已知幂函数f(x)的图象经过(9,3),则f(2)-f(1)=( )
A.3 B.1-2
C.2-1 D.1
解析 设幂函数为f(x)=xα,则f(9)=9α=3,即32α=3,所以2α=1,α=12,即f(x)=x12=x,所以f(2)-f(1)=2-1,选C.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源