《平面向量的坐标运算》教案4
- 资源简介:
约1290字。
2.3.3平面向量的坐标运算
【教学目标】
1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;
2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辨证思维能力.
【教学重难点】
教学重点: 平面向量的坐标运算.
教学难点: 对平面向量坐标运算的理解.
【教学过程】
一、〖创设情境〗
以前,我们所讲的向量都是用有向线段表示,即几何的方法表示。向量是否可以用代数的方法,比如用坐标来表示呢?如果可能的话,向量的运算就可以通过坐标运算来完成,那么问题的解决肯定要方便的多。因此,我们有必要探究一下这个问题:平面向量的坐标运算。
二、〖新知探究〗
思考1:设i、j是与x轴、y轴同向的两个单位向量,若设 =(x1, y1) =(x2, y2)则 =x1i+y1j, =x2i+y2j,根据向量的线性运算性质,向量 + , - ,λ (λ∈R)如何分别用基底i、j表示?
+ =(x1+x2)i+(y1+y2)j,
- =(x1-x2)i+(y1-y2)j,
λ =λx1i+λy1j.
思考2:根据向量的坐标表示,向量 + , - ,λ 的坐标分别如何?
+ =(x1+x2,y1+y2);
- =(x1-x2,y1-y2);
λ =(λx1,λy1).
两个向量和与差的坐标运算法则:
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
思考3:已知点A(x1, y1),B(x2, y2),那么向量 的坐标如何?
结论:一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
思考4:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源