反比例函数在中考中的常见题型复习教案
- 资源简介:
约3770字。
反比例函数在中考中的常见题型
◆知识讲解
1.反比例函数的图像是双曲线,故也称双曲线y= (k≠0).
2.反比例函数y= (k≠0)的性质
(1)当k>0时 函数图像的两个分支分别在第一,三象限内 在每一象限内,y随x的增大而减小.
(2)当k<0时 函数图像的两个分支分别在第二,四象限内 在每一象限内,y随x的增大而增大.
(3)在反比例函数y= 中,其解析式变形为xy=k,故要求k的值,也就是求其图像上一点横坐标与纵坐标之积,通常将反比例函数图像上一点的坐标当作某一元二次方程的两根,运用两根之积求k的值.
(4)若双曲线y= 图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是y= .
(5)由于反比例函数中自变量x和函数y的值都不能为零,所以图像和x轴,y轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.
◆例题解析
例1 (2006,上海市)如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y= 的图像经过点A,
(1)求点A的坐标;
(2)如果经过点A的一次函数图像与y轴的正半轴交于点B,且OB=AB,求这个一次函数的解析式.
【分析】(1)用含一个字母a的代数式表示点A的横坐标,纵坐标,把点A的坐标代入y= 可求得a的值,从而得出点A的坐标.
(2)设点B的坐标为(0,m),根据OB=AB,可列出关于m的一个不等式,从而求出点B的坐标,进而求出经过点A,B的直线的解析式.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源