《与四边形有关的动点问题》教案
- 资源简介:
约2650字。
《与四边形有关的动点问题》
徐州第十三中学 李少荣
【教学内容分析】
有关四边形的动点问题常常与函数关系式、图形的面积是否发生变化联系在一起,既考查同学们对基础知识的掌握情况,又考查同学们对知识的综合运用能力。动态几何特点:问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
【教学目标分析】
1、能够对点在运动变化过程中相伴随的数量关系、图形位置关系等进行观察研究。
2、进一步发展学生探究性学习能力,培养学生动手、动脑、手脑和谐一致的习惯。
3、培养浓厚的学习兴趣,养成与他人合作交流的习惯。
【重点难点分析】
1、教学重点:化“动”为“静”
2、教学难点:运动变化过程中的数量关系、图形位置关系
【教学方法分析】
实践操作、引导探究、小组合作
【教学用具】
多媒体、几何画板软件
【教学过程】
一、课前导学:
(此环节是学生在家自主完成,上课时由小组互查完成情况。学生当堂讲解,教师适当点拨)
1、知识与方法解析:
(1)动态几何问题是关于几何图形存在动点、动图形等方面的问题。
(2)动态几何型中考题关心“不变量”.当求变量之间关系时,通常建立函数模型或不等式模型求解;当求特殊位置关系和值时,常建立方程模型求解.
(3)解决这类问题时,要搞清图形的变化过程,必要时,多作出几个符合条件的草图也是解决问题的好办法。
2、如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为,△ABP的面积为y,如果y关于的函数图象如图2所示,则矩形ABCD的面积是 .
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源