《配方法》教案
- 资源简介:
约1430字。
《配方法》教案
第2课时
教学内容
给出配方法的概念,然后运用配方法解一元二次方程.
教学目标
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重难点关键
1.重点:讲清配方法的解题步骤.
2.难点与关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.
教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)解下列方程:
(1)x2-8x+7=0 (2)x2+4x+1=0
老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9
x-4=±3即x1=7,x2=1
(2)x2+4x=-1 x2+4x+22=-1+22
(x+2)2=3即x+2=±
x1= -2,x2=- -2
二、探索新知
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1.解下列方程
(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.
解:(1)移项,得:x2+6x=-5
配方:x2+6x+32=-5+32(x+3)2=4
由此可得:x+3=±2,即x1=-1,x2=-5
(2)移项,得:2x2+6x=-2
二次项系数化为1,得:x2+3x=-1
配方x2+3x+( )2=-1+( )2(x+ )2=
由此可得x+ =± ,即x1= - ,x2=- -
(3)去括号,整理得:x2+4x-1=0
移项,得x2+4x=1
配方,得(x+2)2=5
x+2=± ,即x1= -2,x2=- -2
三、巩固练习
教材P39 练习 2.(3)、(4)、(5)、(6).
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源