《弧长和扇形面积》教案1
- 资源简介:
约2530字。
《弧长和扇形面积》教案
教学内容
1.圆锥母线的概念.
2.圆锥侧面积的计算方法.
3.计算圆锥全面积的计算方法.
4.应用它们解决实际问题.
教学目标
了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.
通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.
重难点、关键
1.重点:圆锥侧面积和全面积的计算公式.
2.难点:探索两个公式的由来.
3.关键:你通过剪母线变成面的过程.
教具、学具准备
直尺、圆规、量角器、小黑板.
教学过程
一、复习引入
1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.
2.问题1:一种太空囊的示意图如图所示,太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.
老师点评:(1)n°圆心角所对弧长:L= ,S扇形= ,公式中没有n°,而是n;弧长公式中是R,分母是180;而扇形面积公式中是R,分母是360,两者要记清,不能混淆.
(2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,圆柱的侧面积和底圆的面积.
这三部分中,第二部分和第三部分我们已经学过,会求出其面积,但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.
二、探索新知
我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.
(学生分组讨论,提问二三位同学)
问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,底面圆的半径为r,如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,因此圆锥的侧面积为________,圆锥的全面积为________.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源