约2110字。
《圆的轴对称性》
教学目标
1.使学生理解圆的轴对称性.
2.掌握垂径定理.
3.学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题.
教学重点
垂径定理是圆的轴对称性的重要体现,是今后解决有关计算、证明和作图问题的重要依据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用.
教学难点
垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比较,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点.
教学关键
理解圆的轴对称性.
教学环节的设计
这节课我通过七个环节来完成本节课的教学目标,它们是:
复习提问,创设情境;引入新课,揭示课题;讲解新课,探求新知;应用新知,体验成功;
目标训练,及时反馈;总结回顾,反思内化;布置作业,巩固新知.
一、复习提问,创设情境
1.教师演示:将一等腰三角形沿着底边上的高对折,启发学生共同回忆等腰三角形是轴对称图形,同时复习轴对称图形的概念;
2.提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?(教师用教具演示,学生自己操作)
二、引入新课,揭示课题
1.在第一个环节的基础上,引导学生归纳得出结论:
圆是轴对称图形,每一条直径所在的直线都是对称轴.
强调:
(1)对称轴是直线,不能说每一条直径都是它的对称轴;
(2)圆的对称轴有无数条.
判断:任意一条直径都是圆的对称轴( )
设计意图:让学生更好的理解圆的轴对称轴新性,为下一环节探究新知作好准备.
三、讲解新课,探求新知
先按课本进行合作学习
1.任意作一个圆和这个圆的任意一条直径CD;
2.作一条和直径CD的垂线的弦,AB与CD相交于点E.
提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?
在学生探索的基础上,得出结论:(先介绍弧相等的概念)
①EA=EB;② AC=BC,AD=BD.
理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,
∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合.
∴ EA=EB, AC=BC,AD=BD.
思考:你能利用等腰三角形的性质,说明OA平分CD吗?(课内练习1)
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源