约1840字。
课题:§2.3幂函数
教学目标:
知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点 从五个具体幂函数中认识幂函数的一些性质.
难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
教学过程与操作设计:
环节 教学内容设计 师生双边互动
创
设
情
境 阅读教材P90的具体实例(1)~(5),思考下列问题:
1.它们的对应法则分别是什么?
2.以上问题中的函数有什么共同特征?
(答案)
1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).
2.上述问题中涉及到的函数,都是形如 的函数,其中 是自变量,是 常数.
生:独立思考完成引例.
师:引导学生分析归纳概括得出结论.
师生:共同辨析这种新函数与指数函数的异同.
组
织
探
究 材料一:幂函数定义及其图象.
一般地,形如
的函数称为幂函数,其中 为常数.
下面我们举例学习这类函数的一些性质.
作出下列函数的图象:
(1) ;(2) ;(3) ;
(4) ;(5) .
[解] ○1 列表(略)
○2 图象
师:说明:
幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.
生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.
师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.
师生共同分析,强调画图象易犯的错误.
资源评论
{$comment}