约3820字
课 题:7.5曲线和方程(一)曲线和方程
教学目标:
1.了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理
2.在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法
3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神
教学重点:理解曲线与方程的有关概念与相互联系
教学难点:定义中规定两个关系(纯粹性和完备性)
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教材分析:
曲线属于“形”的范畴,方程则属于“数”的范畴,它们通过直角坐标系而联系在一起,“曲线和方程”这节教材,揭示了几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础.这正体现了几何的基本思想,对解析几何教学有着深远的影响.曲线与方程的相互转化,是数学方法论上的一次飞跃.本节教材中把曲线看成是动点的轨迹,蕴涵了用运动的观点看问题的思想方法;把曲线看成方程的几何表示,方程看作曲线的代数反映,又包含了对应与转化的思想方法
由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径.求曲线的方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一
根据大纲要求,本节内容分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”与“方程与曲线”的概念及其关系;第二课时讲解求曲线方程的一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识,并解决与曲线交点有关的问题。考虑到本节内容的基础性和灵活性,可以对课本例题和练习作适当的调整,或进行变式训练
针对第一课时概念强、思维量大、例题习题不多的特点,整节课以启发学生观察思考、分析讨论为主。当学生观察例题回答不出“为什么”时,可以举几个点的坐标作检验,这就是“从特殊到一般”的方法;或引导学生看图,这就是“从具体(直观)到抽象”的方法;或引导学生回到最简单的情形,这就是以简驭繁;或引导学生看(举)反例,这就是正反对比,总之,要使启发方法符合学生的认知规律
教学过程:
一、复习引入:
温故知新,揭示课题
问题: (1)求如图所示的AB的垂直平分线的方程;
资源评论
共有 1位用户发表了评论 查看完整内容我要评价此资源