《曲线和方程》教案
- 资源简介:
约4010字。
《曲线和方程》教案
课 题:7.5曲线和方程(二)
教学目的:
1.了解什么叫轨迹,并能根据所给的条件,选择恰当的直角坐标系求曲线的轨迹方程,画出方程所表示的曲线
2.在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法
3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神
教学重点:求曲线方程的方法、步骤.
教学难点:定义中规定两个关系(纯粹性和完备性)
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教法分析:
第一课时概念强、思维量大、例题习题不多使用启发方法符合学生的认知规律
第二、第三课时规律性强,题目多,可结合实际灵活采用教学方法.在探索一般性解题方法时,可采用发现法教学,在方法的应用及拓广时,可采用归纳法;在训练与反馈部分,则主要采用讲练结合法进行
教学过程:
一、复习引入:
1.“曲线的方程”、“方程的曲线”的定义:
在直角坐标系中,如果某曲线C上的点与一个二元方程 的实数解建立了如下关系:
(1)曲线上的点的坐标都是这个方程的解;(纯粹性)
(2)以这个方程的解为坐标的点都是曲线上的点.(完备性)
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线
2.定义的理解:在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件.两者满足了,“曲线的方程”和“方程的曲线”才具备充分性.只有符合关系(1)、(2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题.这种“以数论形”的思想是解析几何的基本思想和基本方法
二、讲解新课:
1. 坐标法
在笛卡尔以前,人们对代数方程已经有了一定的研究,但是对于二元方程的研究较少,因为大家认识到二元方程 的解都是不确定的 对于这种“不定方程 ”,除了有少数人研究它的整数解以外,大多数人都认为研究它是没有意义的,是不必要的。笛卡尔却对对这个“没有意义的课题”赋予了新的生命,他没有把 看成是未知数,而是创造性地把 看成是变量(从此,变量引入了数学),
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源