约2530字。
《正多边形的有关计算》教案
教学目的:
1、使学生学会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题.
2、通过定理的证明过程培养学生观察能力、推理能力、概括能力;
3、通过一定量的计算,培养学生正确迅速的运算能力;
教学重点:
化正多边形的有关计算为解直角三角形问题定理;正多边形计算图及其应用.
教学难点:
正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.
教学过程:
一、新课引入:
前几课我们学习了正多边形的定义、概念、性质,今天我们来学习正多边形的有关计算.
大家知道正多边形在生产和生活中有广泛的应用性,伴随而来的有关正多边形计算问题必然摆在大家的面前,如何解决正多边形的计算问题,正是本堂课研究的课题.
二、新课讲解:
哪位同学回答,什么叫正多边形.(安排中下生回答:各边相等,各角相等的多边形.)
什么是正多形的边心距、半径?(安排中下生回答:正多边形内切圆的半径叫做边心距.正多边形外接圆的半径叫做正多边形的半径.)
正多边形的边有什么性质、角有什么性质?(安排中下生回答:边都相等,角都相等.)
什么叫正多边形的中心角?(安排中下生回答:正多边形的一边所对正多边形外接圆的圆心角.)
正n边形的中心角度数如何计算?(安排中下生回答:中心角的度数
正n边形的一个外角度数如何计算?(安排中下生回答:一个外角度
哪位同学有所发现?(安排举手学生:正n边形的中心角度数=正n边形的一个外角度数.)
哪位同学记得n边形的内角和公式?(请回忆起来的学生回答).
哪位同学能根据n边形内角和定理和正n边形的性质给出求正n边形一个内角度数的公式?(安排中下生回答:正n边形每个内角度数
正n边形的每个内角与它有共同顶点的外角有何数量关系?(安排中下生回答:互补).
根据正n边形的每个内角与它有共同顶点的外角的互补关系和正n边形每个外角度数公式,正n边形每个内角度数又可怎样计算?(安排中
(幻灯展示练习题,学生思考,回答)
1.正五边形的中心角度数是______;每个内角的度数是______;
2.一个正n边形的一个外角度数是360°,则它的边数n=______,每个内角度数是______;
3.一个正n边形的一个内角的度数是140°,则它的边数n=______,中心角度数是______.
对于前2题安排中下生回答,对于第3题不仅要回答题目的答案而且要求回答思路.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源