约4730字 2.3.1离散型随机变量的期望
教学目标:
知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.
过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξ B(n,p),则Eξ=np”.能熟
练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文
价值。
教学重点:离散型随机变量的均值或期望的概念
教学难点:根据离散型随机变量的分布列求出均值或期望
授课类型:新授课
课时安排:2课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示
2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
若 是随机变量, 是常数,则 也是随机变量 并且不改变其属性(离散型、连续型)
5. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,
ξ取每一个值xi(i=1,2,…)的概率为 ,则称表
ξ x1 x2 … xi …
P P1 P2 … Pi …
为随机变量ξ的概率分布,简称ξ的分布列
6. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.
7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n, ).
于是得到随机变量ξ的概率分布如下:
ξ 0 1 … k … n
P
…
…
称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记 =b(k;n,p).
8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“ ”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为 、事件A不发生记为 ,P( )=p,P( )=q(q=1-p),那么
(k=0,1,2,…, ).于是得到随机变量ξ的概率分布如下:
ξ 1 2 3 … k …
P
…
…
称这样的随机变量ξ服从几何分布
记作g(k,p)= ,其中k=0,1,2,…, .
二、讲解新课:
根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下
ξ 4 5 6 7 8 9 10
P 0.02 0.04 0.06 0.09 0.28 0.29 0.22
在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望
根据射手射击所得环数ξ的分布列,
我们可以估计,在n次射击中,预计大约有
次得4环;
次得5环;
…………
次得10环.
故在n次射击的总环数大约为
,
从而,预计n次射击的平均环数约为
.
这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.
对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个 (i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:
… .
1. 均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为
ξ x1 x2 … xn …
P p1 p2 … pn …
则称 … … 为ξ的均值或数学期望,简称期望.
2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令 … ,则有 … , … ,所以ξ的数学期望
资源评论
{$comment}