2018年中考数学试题分类汇编考点29:与圆有关的位置关系
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共20道小题,约6690字。
2018中考数学试题分类汇编:考点29 与圆有关的位置关系
一.选择题(共9小题)
1.(2018•宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.
【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.
∵DE=4,四边形DEFG为矩形,
∴GF=DE,MN=EF,
∴MP=FN= DE=2,
∴NP=MN﹣MP=EF﹣MP=1,
∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.
故选:D.
2.(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
A.3 B.4 C.6 D.8
【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.
【解答】解:∵PA⊥PB,
∴∠APB=90°,
∵AO=BO,
∴AB=2PO,
若要使AB取得最小值,则PO需取得最小值,
连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,
过点M作MQ⊥x轴于点Q,
则OQ=3、MQ=4,
∴OM=5,
又∵MP′=2,
∴OP′=3,
∴AB=2OP′=6,
故选:C.
3.(2018•滨州)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧 的长为( )
A. B. C. D.
【分析】根据圆周角定理和弧长公式解答即可.
【解答】解:如图:连接AO,CO,
∵∠ABC=25°,
∴∠AOC=50°,
∴劣弧 的长= ,
故选:C.
4.(2018•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC= R.
【解答】解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC= R,
故选:D.
5.(2018•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为( )
A.相交 B.相切 C.相离 D.无法确定
【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.
【解答】解:∵圆心到直线的距离5cm=5cm,
∴直线和圆相切.
故选:B.
6.(2018•徐州)⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是( )
A.内含 B.内切 C.相交 D.外切
【分析】根据两圆圆心距与半径之间的数量关系判断⊙O1与⊙O2的位置关系.
【解答】解:∵⊙O1和⊙O2的半径分别为5和2,O1O2=3,
则5﹣2=3,
∴⊙O1和⊙O2内切.
故选:B.
7.(2018•台湾)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?( )
A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB
【分析】根据大边对大角,平行线的判定和性质即可判断;
【解答】解:如图,∵直线l是公切线
∴∠1=∠B,∠2=∠A,
∵∠1=∠2,
∴∠A=∠B,
∴AC∥BD,
∴∠C=∠D,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源