2012年全国各地中考数学试卷分类汇编:与圆有关的位置关系
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约27500字。
2012年全国各地中考数学试卷分类汇编:与圆有关的位置关系
31.1 直线与圆的位置关系
11.(2012山东省荷泽市,11,3)如图,PA、PB是⊙o的切线,A、B为切点,AC是⊙o 的直径,若∠P=46∘,则∠BAC=______.
【解析】因为PA、PB是⊙o的切线,所以PA=PB,OA⊥PA,又因∠P=46∘,所以∠PAB=67∘,所以∠BAC=∠OAP-∠PAB=90∘-67∘=23∘,
【答案】23∘
【点评】当圆外一点向圆引两条切线,可以利用切线长定理及切线的性质定理,利用等腰三角形的性质及及垂直的性质来计算角的度数.
14.(2012连云港,14,3分)如图,圆周角∠BAC=55°,分别过B、C两点作⊙O的切线,两切线相交于点P,则∠BPC= °。
【解析】连结OB,OC,则OB⊥PB,OC⊥PC。则∠BOC=110°,在四边形PBOC中,根据四边形的内角和为360°,可得∠BPC=70°。
【答案】70
【点评】本题考查了圆周角与圆心角的关系以及切线的性质。
14. (2012湖南湘潭,14,3分)如图, 的一边 是⊙O的直径,请你添加一个条件,使 是⊙O的切线,你所添加的条件为 .
【解析】根据切线的定义来判断,BC⊥AB,或∠ABC=900。
【答案】BC⊥AB,或∠ABC=900。
【点评】此题考查切线的定义。圆的切线垂直于过切点的半径。
20. (2012浙江丽水8分,20题)(本题8分)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
【解析:】(1)欲证BD平分∠ABH,只需证∠OBD=∠DBH.连接OD,则∠OBD=∠ODB,为止只需证∠ODB=∠DBH即可.(2)过点O作OG⊥BC于点G,在Rt△OBG中,利用勾股定理即可求得OG的值.
【解】:(1)证明:连接OD.
∵EF是⊙O的切线,∴OD⊥EF.
又∵BH⊥EF,∴OD∥BH,
∴∠ODB=∠DBH.
而OD=OB,∴∠ODB=∠OBD,
∴∠OBD=∠DBH,
∴BD平分∠ABH.
(2)过点O作OG⊥BC于点G,则BG=CG=4,
在Rt△OBG中,OG= .
【点评】:已知圆的切线,常作过切点的半径构造直角三角形,以便于利用勾股定理求解问题.
20.(2012福州,20,满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E。
(1)求证:AC平分∠DAB;
(2)若∠B=60°,CD= ,求AE的长。
解析:(1)由CD是⊙O的切线,C是切点,故优先考虑连接OC,则OC⊥CD,AD∥OC,因此易证AC平分∠DAB;(2)由∠B=60°,可联想到30°的直角三角形及用解直角三角形的方法求出AE,由∠B=60°,可得∠1=∠3=30°,因为CD= ,因此可得AC= ,从而可求得AB的长,连接OE,易知△OEA是等边三角形,故可求得AE的长,本题还可连接CE、AB等来求出AE。
答案:(1)证明:如图1,连接OC,
∵CD为⊙O的切线
∴OC⊥CD
∴∠OCD=90°
∵AD⊥CD
∴∠ADC=90°
∴∠OCD+∠ADC=180°
∴AD∥OC
∴∠1=∠2
∵OA=OC
∴∠2=∠3
∴∠1=∠3
即AC平分∠DAB。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源