2017版高考数学北师大版(理)一轮复习(课件+讲义):第4章《三角函数、解三角形》ppt(共16份)

  • 手机网页: 浏览手机版
  • 资源类别: 北师大版 / 高中课件 / 高考复习课件
  • 文件类型: ppt, doc
  • 资源大小: 42.19 MB
  • 资源评级:
  • 更新时间: 2016/4/27 21:34:20
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:
查看预览图
2017版高考数学北师大版(理)一轮复习(课件+讲义):第4章   三角函数、解三角形
4.1   任意角、弧度制及任意角的三角函数.docx
4.1   任意角、弧度制及任意角的三角函数.pptx
4.2   同角三角函数基本关系式及诱导公式.docx
4.2   同角三角函数基本关系式及诱导公式.pptx
4.3   三角函数的图像与性质.docx
4.3   三角函数的图像与性质.pptx
4.4   函数y=Asin(ωx+φ)的图像及应用.docx
4.4   函数y=Asin(ωx+φ)的图像及应用.pptx
4.5   两角和与差的正弦、余弦和正切公式.docx
4.5   两角和与差的正弦、余弦和正切公式.pptx
4.6   简单的三角恒等变换.docx
4.6   简单的三角恒等变换.pptx
4.7 正弦定理、余弦定理.docx
4.7 正弦定理、余弦定理.pptx
4.8 解三角形的综合应用.docx
4.8 解三角形的综合应用.pptx
  1.角的概念
  (1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.
  (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S={β|β=k•360°+α,k∈Z}.
  (3)象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
  2.弧度制
  (1)定义:在以单位长为半径的圆中,单位长度的弧所对的圆心角为1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.
  (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad,1 rad=180π°.
  (3)扇形的弧长公式:l=|α|•r,扇形的面积公式:S=12lr=12|α|•r2.
  3.任意角的三角函数
  任意角α的终边与单位圆交于点P(x,y)时,sin α=y,cos α=x,tan α=yx(x≠0).
  三个三角函数的初步性质如下表:
  1.两角和与差的余弦、正弦、正切公式
  cos(α-β)=cos αcos β+sin αsin β (C(α-β))
  cos(α+β)=cos_αcos_β-sin_αsin_β (C(α+β))
  sin(α-β)=sin_αcos_β-cos_αsin_β (S(α-β))
  sin(α+β)=sin_αcos_β+cos_αsin_β (S(α+β))
  tan(α-β)=tan α-tan β1+tan αtan β (T(α-β))
  tan(α+β)=tan α+tan β1-tan αtan β (T(α+β))
  2.二倍角公式
  sin 2α=2sin_αcos_α;
  cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
  tan 2α=2tan α1-tan2α.
  3.公式的逆用、变形等
  (1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);
  (2)cos2α=1+cos 2α2,sin2α=1-cos 2α2;
  (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sinα±π4.
  【思考辨析】
  判断下面结论是否正确(请在括号中打“√”或“×”)
  (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )
  (2)在锐角△ABC中,sin Asin B和cos Acos B大小不确定.( × )
  (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)•(1-tan αtan β),且对任意角α,β都成立.( × )
  1.仰角和俯角
  与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).
  2.方向角
  相对于某正方向的水平角,如南偏东30°,北偏西45°等.
  3.方位角
  指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).
  【思考辨析】
  判断下面结论是否正确(请在括号中打“√”或“×”)
  (1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( × )
  (2)俯角是铅垂线与视线所成的角,其范围为[0,π2].( × )
  (3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ )
  (4)如图,为了测量隧道口AB的长度,可测量数据a,b,γ进行计算.( √ )
  1.(教材改编)海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B成60°视角,从B望C和A成75°视角,则BC等于(  )
  A.103 n mile  B.1063 n mile
 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源