《简易逻辑》教案
- 资源简介:
约1410字。
第05课时:第一章 集合与简易逻辑——简易逻辑
一.课题: TC "§1.5简易逻辑" 简易逻辑
二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;反证法在证明过程中的应用.
三.教学重点:复合命题的构成及其真假的判断,四种命题的关系.
四.教学过程:
(一)主要知识:
1.理解由“或”“且”“非”将简单命题构成的复合命题;
2.由真值表判断复合命题的真假;
3.四种命题间的关系.
(二)主要方法:
1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比;
2.通常复合命题“ 或 ”的否定为“ 且 ”、“ 且 ”的否定为“ 或 ”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;
3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若 ,则 ”的形式;
4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾.
(三)例题分析:
例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假:
(1)菱形对角线相互垂直平分.
(2)“ ”
解:(1)这个命题是“ 且 ”形式, 菱形的对角线相互垂直; 菱形的对角线相互平分,
∵ 为真命题, 也是真命题 ∴ 且 为真命题.
(2)这个命题是“ 或 ”形式, ; ,
∵ 为真命题, 是假命题 ∴ 或 为真命题.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源