《函数模型的应用实例》学案1
- 资源简介:
约2020字。
3.2.2函数模型的应用举例
第二课时 自建函数模型解决实际问题
课前预习学案
一、预习目标:知道5种基本初等函数及其性质
二、预习内容:
函数 图像 定义域 值域 性质
一次函数
二次函数
指数函数
对数函数
幂函数
三.提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:能够通过题意,自建模型,解决实际的问题
学习重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。
学习难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。
二、探究过程:
例1、某桶装水经营部每天的房租、工作人员等固定成本为200元,每桶水的进价是5元。销售单价与日销售量的关系如图所示:
销售单价/元 6 7 8 9 10 11 12
日均销售量/桶 480 440 400 360 320 280 240
请根据以上的数据作出分析,这个经营部怎样定价才能获得最大利润?
探索以下问题:
(1)随着销售价格的提升,销售量怎样变化?成一个什么样的函数关系?
(2)最大利润怎么表示?润大利润=收入-支出
本题的解答过程:
解:
本题总结
例2.某地区不同身高的未成年男性的体重平均值发下表
(身高:cm;体重:kg)
身高 60 70 80 90 100 110
体重 6.13 7.90 9.99 12.15 15.02 17.50
身高 120 130 140 150 160 170
体重 20.92 26.86 31.11 38.85 47.25 55.05
1) 根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。
2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是事正常?
探索以下问题:
1)建立适当的坐标系,根据统计数据,画出它们相应的散点图;
2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?
3)你认为选择何种函数来描述这个地区未成年男性体重 与身高 的函数关系比较合适?
4)确定函数模型,并对所确定模型进行适当的检验和评价.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源