广东省阳东广雅中学2013届高三8月月考理科数学试题

  • 手机网页: 浏览手机版
  • 资源类别: 人教版 / 高中试卷 / 高考模拟试卷
  • 文件类型: doc
  • 资源大小: 118 KB
  • 资源评级:
  • 更新时间: 2013/3/22 11:09:20
  • 资源来源: 会员转发
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

  此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。

共20题,约2000字。

  一.选择题(共8小题,每小题5分,共40分)
  1.若全集U={x∈R|x2≤4},则集合A={x∈R||x+1|≤1}的补集 UA为(  )
  A. {|x∈R|0<x<2|} B. {|x∈R|0≤x<2|} C. {|x∈R|0<x≤2|} D. {|x∈R|0≤x≤2|}
  2.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是(  )
  A.    B. y=x3 C. y=2|x| D.  y=cosx
  3.数 的定义域为(  )
  A. (0,+∞) B. (﹣∞,1] C. (﹣∞,0)∪[1+∞) D. (0,1]
  4.下列函数中,值域是(0,+∞)的函数是(  )
  A.   B. y=x2+x+1 C.   D. y=|log2(x+1)|
  5.已知函数f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2, 则f(x)的最大值为(  )
  A. 1 B. 0 C. ﹣1 D. 2
  6.设a=logπ3,b=log34,c=log417,则(  )
  A. a>b>c B. c>b>a C.[] a>c>b D. c>a>b
  7.已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)< 的x取值范围是(  )
  A. ( , ) B. [ , ) C. ( , ) D. [ , )
  8.已知过点(1,2)的二次函数y=ax2+bx+c的图象如图,给出下列论断:①abc>0,②a﹣b+c<0,③b<1,④ .其中正确论断是(  )
  A. ①③ B. ②④ C. ②③ D. ②③④
  二.填空题(共6小题,每小题5分.共计30分)
  9.已知a< ,   则化简的结果是_______________ _
  10.函数 的单调递增区间是______________________
  11.若函数y=x2+x+a在[﹣1,2]上的最大值与最小值之和为6,则a=________
  12.当a>0时,设命题P:函数 在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是____________________
  13.已知函数g(x)在(0,+∞)上是增函数,g(x)=f(|x|).若f(x)=lgx,则g(lgx)>g(1)时x的取值范围是 _________ .
  14.已知m,n∈Z,关于x的方程2| 2﹣x|+m+2=0有唯一的实数解,且函数f(x)=log2(8﹣|x|)的定义域是[m,n],值域[0,3],那么m+n= _________ .
  三.解答题(共6小题,共计80分)
  15.(本小题12分)已知集合A={x|3≤x<7},B={x|2<x<10},C={x|5﹣a<x<a}.
  (1)求A∪B,(CRA)∩B;
  (2)若C (A∪B),求a的取值范围.
  16.(本小题13分)已知m>0,p:(x+2)(x﹣6)≤0,q:2﹣m≤x≤ 2+m.
  (I)若p是q的充分条件,求实数m的取值范围;
  (Ⅱ)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.
  17.(本小题13分)设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
  (1)求函数f(x)的表达式;
  (2)设g(x)=k x+1,若F(x)=log2[g(x)﹣f(x)]在区间[1,2]上是增函数,求实数k的取值范围
  18.(本小题满分14分)
  函数 是定义域为R的奇函数,且对任意的 均有 成立

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源