《函数的极值与导数》教案2
- 资源简介:
约2520字。
§3.3.2函数的极值与导数
教学目标:
1.理解极大值、极小值的概念;
2.能够运用判别极大值、极小值的方法来求函数的极值;
3.掌握求可导函数的极值的步骤;
教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.
教学过程:
创设情景
观察图3.3-8,我们发现, 时,高台跳水运动员距水面高度最大.那么,函数 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?
放大 附近函数 的图像,如图3.3-9.可以看出 ;在 ,当 时,函数 单调递增, ;当 时,函数 单调递减, ;这就说明,在 附近,函数值先增( , )后减( , ).这样,当 在 的附近从小到大经过 时, 先正后负,且 连续变化,于是有 .
对于一般的函数 ,是否也有这样的性质呢?
附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号
新课讲授
一、 导入新课
观察下图中P点附近图像从左到右的变化趋势、P点的函数值以及点P位置的特点
函数图像在P点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P点附近,P点的位置最高,函数值最大
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源