约2330字。
数列问题的题型与方法
一、复习目标
1. 能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n项和公式解题;
2.能熟练地求一些特殊数列的通项和前 项的和;
3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.
5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.
6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
二、双基透视
1.可以列表复习等差数列和等比数列的概念、有关公式和性质.
2.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证 都成立。
3. 在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
4.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、范例分析
例1.已知数列{a }是公差d≠0的等差数列,其前n项和为S .
(2)过点Q (1,a ),Q (2,a )作直线12,设l 与l 的夹角为θ,
证明:(1)因为等差数列{a }的公差d≠0,所以
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源