约1140字。
2.3等差数列的前n项和(一)
一、教学目标
1、等差数列前n项和公式.
2、等差数列前n项和公式及其获取思路;
3、会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.
二、教学重点:等差数列前n项和公式的理解、推导及应用.
教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题.
三、教学过程
(一)、复习引入:
1.等差数列的定义: - =d ,(n≥2,n∈N )
2.等差数列的通项公式:
(1) (2) (3) =pn+q (p、q是常数)
3.几种计算公差d的方法:① - ② ③
4.等差中项: 成等差数列
5.等差数列的性质: m+n=p+q (m, n, p, q ∈N )
6.数列的前n项和:数列 中, 称为数列 的前n项和,记为 .
“小故事”1、2、3
高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目: 1+2+…100=?”
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:
“1+2+3+…+100=5050.”
教师问:“你是如何算出答案的?”
高斯回答说:“因为1+100=101;
2+99=101;…50+51=101,所以 101×50=5050”
这个故事告诉我们:
(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.
(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法.
二、讲解新课:
1.等差数列的前 项和公式1:
证明: ①
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源