约1420字 函数的单调性与极值
教学目标:正确理解利用导数判断函数的单调性的原理;
掌握利用导数判断函数单调性的方法;
教学重点:利用导数判断函数单调性;
教学难点:利用导数判断函数单调性
教学过程:
一 引入:
以前,我们用定义来判断函数的单调性.在假设x1<x2的前提下,比较f(x1)<f(x2)与的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.
二 新课讲授
1 函数单调性
我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数 的图像可以看到:在区间(2, )内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即 >0时,函数y=f(x) 在区间(2, )内为增函数;在区间( ,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即 0时,函数y=f(x) 在区间( ,2)内为减函数.
定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内 >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内 <0,那么函数y=f(x) 在为这个区间内的减函数。
例1 确定函数 在哪个区间内是增函数,哪个区间内是减函数。
例2 确定函数 的单调区间。
2 极大值与极小值
观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。
一般地,设函数y=f(x)在 及其附近有定义,如果 的值比 附近所有各点的函数值都大,我们说f( )是函数y=f(x)的一个极大值;如果 的值比 附近所有各点的函数值都小,我们说f( )是函数y=f(x)的一个极小值。极大值与极小值统称极值。
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:
(ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。
(ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。
(ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示, 是极大值点, 是极小值点,而 > 。
资源评论
{$comment}